20 research outputs found

    Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission

    Get PDF
    BACKGROUND: Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. METHODS: Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. RESULTS: To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. CONCLUSION: The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination

    Protocol for a randomised controlled trial of an outreach support program for family carers of older people discharged from hospital

    Get PDF
    Background: Presentations to hospital of older people receiving family care at home incur substantial costs for patients, families, and the health care system, yet there can be positive carer outcomes when systematically assessing/addressing their support needs, and reductions in older people's returns to hospital attributed to appropriate discharge planning. This study will trial the Further Enabling Care at Home program, a 2-week telephone outreach initiative for family carers of older people returning home from hospital. Hypotheses are that the program will (a) better prepare families to sustain their caregiving role and (b) reduce patients' re-presentations/readmissions to hospital, and/or their length of stay; also that reduced health system costs attributable to the program will outweigh costs of its implementation. Methods/Design: In this randomised controlled trial, family carers of older patients aged 70+ discharged from a Medical Assessment Unit in a Western Australian tertiary hospital, plus the patients themselves, will be recruited at discharge (N = 180 dyads). Carers will be randomly assigned (block allocation, assessors blinded) to receive usual care (control) or the new program (intervention). The primary outcome is the carer's self-reported preparedness for caregiving (Preparedness for Caregiving Scale administered within 4 days of discharge, 2-3 weeks post-discharge, 6 weeks post-discharge). To detect a clinically meaningful change of two points with 80 % power, 126 carers need to complete the study. Patients' returns to hospital and subsequent length of stay will be ascertained for a minimum of 3 months after the index admission. Regression analyses will be used to determine differences in carer and patient outcomes over time associated with the group (intervention or control). Data will be analysed using an Intention to Treat approach. A qualitative exploration will examine patients' and their family carers' experiences of the new program (interviews) and explore the hospital staff's perceptions (focus groups). Process evaluation will identify barriers to, and facilitators of, program implementation. A comprehensive economic evaluation will determine cost consequences. Discussion: This study investigates a novel approach to identifying and addressing family carers' needs following discharge from hospital of the older person receiving care. If successful, the program has potential to be incorporated into routine post-discharge support. Trial registration: Australian and New Zealand Clinical Trial Registry: ACTRN12614001174673

    Two Theileria parva CD8 T Cell Antigen Genes Are More Variable in Buffalo than Cattle Parasites, but Differ in Pattern of Sequence Diversity

    Get PDF
    <p><b>Background:</b> Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection.</p> <p><b>Methodology/Principal Findings:</b> Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (similar to 12%) in Tp1 and in 320 positions (similar to 61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle.</p> <p><b>Conclusions/Significance:</b> The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.</p&gt

    Two Theileria parva CD8 T Cell Antigen Genes Are More Variable in Buffalo than Cattle Parasites, but Differ in Pattern of Sequence Diversity

    Get PDF
    <p><b>Background:</b> Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection.</p> <p><b>Methodology/Principal Findings:</b> Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (similar to 12%) in Tp1 and in 320 positions (similar to 61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle.</p> <p><b>Conclusions/Significance:</b> The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.</p&gt

    MHC Class I Bound to an Immunodominant Theileria parva Epitope Demonstrates Unconventional Presentation to T Cell Receptors

    Get PDF
    T cell receptor (TCR) recognition of peptide-MHC class I (pMHC) complexes is a crucial event in the adaptive immune response to pathogens. Peptide epitopes often display a strong dominance hierarchy, resulting in focusing of the response on a limited number of the most dominant epitopes. Such T cell responses may be additionally restricted by particular MHC alleles in preference to others. We have studied this poorly understood phenomenon using Theileria parva, a protozoan parasite that causes an often fatal lymphoproliferative disease in cattle. Despite its antigenic complexity, CD8+ T cell responses induced by infection with the parasite show profound immunodominance, as exemplified by the Tp1214–224 epitope presented by the common and functionally important MHC class I allele N*01301. We present a high-resolution crystal structure of this pMHC complex, demonstrating that the peptide is presented in a distinctive raised conformation. Functional studies using CD8+ T cell clones show that this impacts significantly on TCR recognition. The unconventional structure is generated by a hydrophobic ridge within the MHC peptide binding groove, found in a set of cattle MHC alleles. Extremely rare in all other species, this feature is seen in a small group of mouse MHC class I molecules. The data generated in this analysis contribute to our understanding of the structural basis for T cell-dependent immune responses, providing insight into what determines a highly immunogenic p-MHC complex, and hence can be of value in prediction of antigenic epitopes and vaccine design

    Delineation of the population genetic structure of Culicoides imicola in East and South Africa

    Get PDF
    BACKGROUND: Culicoides imicola Kieffer, 1913 is the main vector of bluetongue virus (BTV) and African horse sickness virus (AHSV) in Sub-Saharan Africa. Understanding the population genetic structure of this midge and the nature of barriers to gene flow will lead to a deeper understanding of bluetongue epidemiology and more effective vector control in this region. METHODS: A panel of 12 DNA microsatellite markers isolated de novo and mitochondrial DNA were utilized in a study of C. imicola populations from Africa and an outlier population from the Balearic Islands. The DNA microsatellite markers and mitochondrial DNA were also used to examine a population of closely related C. bolitinos Meiswinkel midges. RESULTS: The microsatellite data suggest gene flow between Kenya and south-west Indian Ocean Islands exist while a restricted gene flow between Kenya and South Africa C. imicola populations occurs. Genetic distance correlated with geographic distance by Mantel test. The mitochondrial DNA analysis results imply that the C. imicola populations from Kenya and south-west Indian Ocean Islands (Madagascar and Mauritius) shared haplotypes while C. imicola population from South Africa possessed private haplotypes and the highest nucleotide diversity among the African populations. The Bayesian skyline plot suggested a population growth. CONCLUSIONS: The gene flow demonstrated by this study indicates a potential risk of introduction of new BTV serotypes by wind-borne infected Culicoides into the Islands. Genetic similarity between Mauritius and South Africa may be due to translocation as a result of human-induced activities; this could impact negatively on the livestock industry. The microsatellite markers isolated in this study may be utilised to study C. bolitinos, an important vector of BTV and AHSV in Africa and identify sources of future incursions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-015-1277-4) contains supplementary material, which is available to authorized users

    STRAIN SPECIFICITY OF BOVINE THEILERIA-PARVA-SPECIFIC CYTOTOXIC T-CELLS IS DETERMINED BY THE PHENOTYPE OF THE RESTRICTING CLASS-I MHC

    No full text
    To determine whether the major histocompatibility complex (MHC) phenotype of cattle could affect the parasite strain specificity of immunity to Theileria parva by influencing the antigenic specificity of Theileria-specific cytotoxic T lymphocytes (CTL), we investigated the parasite strain specificity of Theileria-specific CTL clones derived from cattle of different class I MHC phenotypes. Thirty-one class I-restricted CTL clones were generated from four cattle immunized with the Muguga stock of T. parva. The MHC restriction and parasite strain specificities were determined for each clone utilizing as targets, parasitized cell lines of different MHC phenotypes and cloned cell lines containing different parasite strains. CTL clones restricted by the same MHC determinant had similar parasite strain specificities. On the other hand, clones restricted by different MHC determinants exhibited different parasite strain specificities. This was true whether the clones were generated from the same animal or from different cattle and tested on a target cell line expressing both MHC determinants. These results provide strong evidence that differences in the strain specificities of CTL derived from animals immunized with the same parasite stock, are determined by the class I MHC phenotype of the immunized animal.status: publishe

    CHARACTERIZATION OF A POLYMORPHIC IMMUNODOMINANT MOLECULE IN SPOROZOITES AND SCHIZONTS OF THEILERIA-PARVA

    No full text
    This study examines several aspects of a polymorphic, immunodominant molecule (PIM) found in the protozoan parasite, Theileria parva. The antigen is present in all T.p. parva stocks examined, and in the related subspecies, T.p. bovis and T.p. lawrencei. It is the predominant antigen recognized by antisera from immune cattle on Western blot analysis of schizont-infected lymphocytes, and is the only antigen which has been shown to react with anti-schizont monoclonal antibodies (MoAbs) on Western blots or in immunoprecipitations The antigen shows polymorphism in both size and expression of antibody epitopes among the different stocks of T. parva. The antigen is present in sporozoites as well as schizonts.status: publishe

    Two Theileria parva CD8 T cell antigen genes are more variable in buffalo than cattle parasites, but differ in pattern of sequence diversity.

    No full text
    BACKGROUND: Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection. METHODOLOGY/PRINCIPAL FINDINGS: Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (∼12%) in Tp1 and in 320 positions (∼61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle. CONCLUSIONS/SIGNIFICANCE: The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point
    corecore